Fundamental Algorithms 1 - Solution Examples

Exercises

Exercise 1

Prove (by induction over n) that $\frac{1}{3} n^{2}+5 n+30 \in O\left(n^{2}\right)$ for all $n \in \mathbb{N}^{+}$.

Solution:

(Note: we wouldn't have to prove by induction, but it's a simple case to practice it.)

$$
f(n):=\frac{1}{3} n^{2}+5 n+30 \in O\left(n^{2}\right) \quad \Leftrightarrow \quad \exists c>0 \exists n_{0} \forall n \geq n_{0}: f(n) \leq c n^{2}
$$

Let $c:=100, n_{0}:=1$.
Base case: $n=n_{0}=1$

$$
\frac{1}{3}+5+30=35 \frac{1}{3} \leq 100
$$

Induction hypothesis: For some $n \in \mathbb{N}: f(n) \leq 100 n^{2}$

Inductive step:

$$
\begin{aligned}
f(n+1) & =\frac{1}{3}(n+1)^{2}+5(n+1)+30 \\
& =\frac{1}{3}\left(n^{2}+2 n+1\right)+5(n+1)+30 \\
& =f(n)+\frac{2}{3} n+\frac{16}{3} \\
& \text { ih } 100 n^{2}+\frac{2}{3} n+\frac{16}{3} \\
& \leq 100 n^{2}+200 n+100 \\
& =100(n+1)^{2}
\end{aligned}
$$

Note: we chose a pretty large c for this prove - you should re-do this proof with smaller values for c (such as $c=1$) and see what happens.

Exercise 2

(a) Compare the growth of the following functions using the $o-, O$-, and Θ-notation:

1. $n \ln n$
2. n^{l} for all $l \in \mathbb{N}$
3. 2^{n}

Hint: use L'Hôpital's rule!
(b) Prove the following growth characterizations:

$$
\text { 1) } \sum_{i=1}^{n} \frac{1}{i} \in \Theta(\ln n) \quad \text { 2) } \ln (n!) \in \Theta(n \ln n)
$$

Hint: Try to prove $n^{\frac{n}{2}} \leq n!\leq n^{n}$ first!

Solution:

(a) $n^{l} \in o\left(2^{n}\right)$ for all $l \in \mathbb{N}$, because by L'Hôpital's rule:

$$
\lim _{n \rightarrow \infty} \frac{n^{l}}{2^{n}}=\lim _{n \rightarrow \infty} \frac{l \cdot n^{l-1}}{2^{n} \cdot \ln 2}=\lim _{n \rightarrow \infty} \frac{l \cdot(l-1) \cdot n^{l-2}}{2^{n} \cdot(\ln 2)^{2}}=\ldots=\lim _{n \rightarrow \infty} \frac{l!}{2^{n} \cdot(\ln 2)^{l}}=0
$$

Therefore, $n^{l} \in O\left(2^{n}\right)$ for all $l \in \mathbb{N}$.
Obviously, $n^{1} \in o(n \ln n)$ and $n^{1} \in O(n \ln n)$, but for $l \geq 2$:

$$
\lim _{n \rightarrow \infty} \frac{n \ln n}{n^{l}}=\lim _{n \rightarrow \infty} \frac{\ln n}{n^{l-1}}=\lim _{n \rightarrow \infty} \frac{1}{n \cdot(l-1) \cdot n^{l-2}}=0
$$

Therefore $n^{l} \in \omega(n \ln n)$ for all $l \geq 2$. This also holds for any real $l>1$.
As a consequence, $n \ln n \in o\left(2^{n}\right)$.
(b) 1) $\sum_{i=1}^{n} \frac{1}{i} \in \Theta(\ln n)$: Consider the functions $u(x):=\frac{1}{\lfloor x\rfloor}$ and $l(x):=\frac{1}{\lceil x\rceil}$, then:

$$
\begin{aligned}
l(x) \leq \frac{1}{x} \leq u(x) & \Rightarrow \int_{1}^{n} l(x) d x \leq \int_{1}^{n} \frac{1}{x} d x \leq \int_{1}^{n} u(x) d x \\
& \Rightarrow \sum_{i=2}^{n} \frac{1}{i} \leq \ln n-\ln 1 \leq \sum_{i=1}^{n-1} \frac{1}{i}
\end{aligned}
$$

(draw a graph of $u(x)$ and $l(x)$ to see why the integrals are given by these sums).
Thus, $\ln n \leq \sum_{i=1}^{n-1} \frac{1}{i} \leq \sum_{i=1}^{n} \frac{1}{i}$, and therefore $\ln n \in O\left(\sum_{i=1}^{n} \frac{1}{i}\right)$.
As $2 \cdot \sum_{i=2}^{n} \frac{1}{i}=2 \cdot\left(\frac{1}{2}+\cdots+\frac{1}{n}\right)>1$, we know that

$$
3 \sum_{i=2}^{n} \frac{1}{i}=2 \sum_{i=2}^{n} \frac{1}{i}+\sum_{i=2}^{n} \frac{1}{i}>1+\sum_{i=2}^{n} \frac{1}{i}=\sum_{i=1}^{n} \frac{1}{i},
$$

and, therefore,

$$
\sum_{i=1}^{n} \frac{1}{i}<3 \sum_{i=2}^{n} \frac{1}{i} \leq 3 \ln n \quad \Rightarrow \quad \sum_{i=1}^{n} \frac{1}{i} \in O(\ln n), \quad \text { q.e.d. }
$$

2) Using $n^{\frac{n}{2}} \leq n!\leq n^{n}$, we get:

$$
\ln n^{\frac{n}{2}} \leq \ln (n!) \leq \ln n^{n} \quad \Rightarrow \quad \frac{n}{2} \ln n \leq \ln (n!) \leq n \ln n
$$

which leads directly to the result $\ln (n!) \in \Theta(n \ln n)$.
Proof for $n^{\frac{n}{2}} \leq n!\leq n^{n}$: It is obvious that $n!=1 \cdot 2 \cdot \ldots \cdot n \leq n \cdot n \cdot \ldots \cdot n=n^{n}$. To prove $n^{\frac{n}{2}} \leq n!$, or $n^{n} \leq(n!)^{2}$, we show that $\frac{(n!)^{2}}{n^{n}} \geq 1$:

$$
\frac{(n!)^{2}}{n^{n}}=\frac{n!}{n^{n}} \cdot n!=\prod_{i=0}^{n-1} \frac{n-i}{n} \cdot \prod_{i=0}^{n-1}(i+1)=\prod_{i=0}^{n-1} \frac{(n-i)(i+1)}{n}
$$

and $(n-i)(i+1)=-i^{2}+n i-i+n=n+i(n-1-i) \geq n$. Therefore, all factors of the product are ≥ 1. Consequently, the product itself is ≥ 1.

Exercise 3

Let $l(x)$ be the number of bits of the representation of x in the binary system. Prove:

$$
\sum_{i=1}^{n} l(i) \in \Theta(n \ln n)
$$

Solution:

We need the following equalities:

- $\sum_{i=1}^{n} \ln i=\ln \left(\prod_{i=1}^{n} i\right)=\ln (n!) \in \Theta(n \ln n)$, (see exercise $1(\mathrm{~b})$, part $2!$), and
- $l(i)=\left\lfloor\ln _{2} i\right\rfloor+1$ (if the binary representation of a number has l bits, the respective number i will be between 2^{l-1} and $2^{l}-1$).

If we can show that

$$
c_{1} \ln _{2} i \leq\left\lfloor\ln _{2} i\right\rfloor \leq \ln _{2} i
$$

for some constant $0<c_{1}<1$ (the second inequality is a trivial result of the definition of \rfloor), and use the transformation

$$
\sum_{i=1}^{n} l(i)=\sum_{i=1}^{n}\left(\left\lfloor\ln _{2} i\right\rfloor+1\right)=n+\sum_{i=1}^{n}\left\lfloor\ln _{2} i\right\rfloor
$$

we get

$$
c_{1}\left(n+\sum_{i=1}^{n} \ln _{2} i\right) \leq \sum_{i=1}^{n} l(i) \leq n+\sum_{i=1}^{n} \ln _{2} i \quad \Rightarrow \quad \sum_{i=1}^{n} l(i) \in \Theta(n \ln n)
$$

We still have to prove that $c_{1} \ln _{2} i \leq\left\lfloor\ln _{2} i\right\rfloor$ for some c_{1} : For $i \geq 3$, we can choose c_{1}, such that $i^{c_{1}}<\frac{i}{2}$ (choose $c_{1}:=\frac{1}{4}$, e.g.). Then

$$
c_{1} \ln _{2} i=\ln _{2}\left(i^{c_{1}}\right)<\ln _{2} \frac{i}{2}=\ln _{2} i-1<\left\lfloor\ln _{2} i\right\rfloor .
$$

As the inequality is also correct for $i \in\{1,2\}$, we are finished.

Exercise 4

Prove that $\widehat{\Theta}=\{(f, g) \mid f \in \Theta(g)\}$ defines an equivalence relation on the set of functions $\{f \mid f: \mathbb{N} \rightarrow \mathbb{R}\}$.

Solution:

To show that $\widehat{\Theta}$ is an equivalence relation, we have to prove that:

- $\widehat{\Theta}$ is reflexive: as $f \in \Theta(f)$ (e.g., choose constants $c_{1}:=\frac{1}{2}$, and $c_{2}:=\frac{3}{2}$), by definition $(f, f) \in \widehat{\Theta}$;
- $\widehat{\Theta}$ is symmetric: if $f \in \Theta(g)$, then

$$
\begin{aligned}
& -f \in O(g) \Rightarrow g \in \Omega(f) \\
& -f \in \Omega(g) \Rightarrow g \in O(f)
\end{aligned}
$$

Therefore, by definition $g \in \Theta(f)$;

- $\widehat{\Theta}$ is transitive: if $f \in \Theta(g)$, and $g \in \Theta(h)$, then, there are constants c_{1}, c_{2}, c_{3}, and c_{4}, such that for sufficiently large n

$$
\begin{aligned}
& -c_{1} f(n) \leq g(n) \leq c_{2} f(n) \\
& -c_{3} g(n) \leq h(n) \leq c_{4} g(n)
\end{aligned}
$$

Therefore, $c_{1} c_{3} f(n) \leq h(n) \leq c_{2} c_{4} h(n)$ which leads to $f \in \Theta(h)$.

Homework

Study the following basic algorithms for sorting:
InsertionSort: i.e., sort a data set by successively inserting individual items into a sorted list.
MergeSort: i.e., splitting a list into two halves, sorting the halves individually, and merging the sorted sublists \rightarrow in particular, study the Merge algorithm for combining two sorted lists into one.

You should understand how each algorithm proceeds to sort a given list of items.

